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Rationale for fuel research



Forecast 1



Forecast 2

Gasoline/Diesel for carsGasoline/Diesel for cars

Gasoline/Diesel for Transport
Boats, Busses and Trucks

Aviation kerosene

Aviation hydrogen

Hydrogen for Transport
Boats, Busses and Trucks

Hydrogen for cars

Train

High Speed
Train

This figure is copied from:  Azar, C. “Ökad levnadsstandard och minskade utsläpp – En omöjlig kombination?”.
Det Naturliga Steget Nr 4-00/1-01. Translations made by Rolf Egnell

Carbon sequestration



But coal lasts for at least another 200 years!

Forecast 3

Source: Aspo http://www.peakoil.net/

http://www.peakoil.net/


Forecast 4



Swedish Energy Administration 
Source: Oljans ändlighet – ett rörligt mål. ER 2006:21

Extractable oil 
1.3E9 barrels



Predictable future
• There will be new fuels on the market 

adaptation
• Fuel prices will increase low fuel consumption
• Concern of the climate CO2 neutral feedstock 

(bio mass and fossil plus carbon sequestration
• Maintained or sharpened emission standards 

Further developed combustion processes and 
exhaust after treatment 



Production of fuels from different feedstock
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The impact of fuel

Oxygenates



Oxygenated diesel fuels and soot

Source: “DME fuel blends for low-emission, direct-injection diesel engines” SAE-paper 2000-01-2004



Adiabatic flame temperture



Dimethylether – DME

ECE R49 [g/kWh]
ESC from Euro IV

Project results Euro III Euro IV Euro V

NOx 2.99 5.0 3.5 2.0

HC 0.12 0.66 0.46 0.46

CO 0.25 2.1 1.5 1.5

PM <0.02 0.1 0.02 0.02

Volvo

Source: Hansen, K. F. et al ”Demonstration of a DME (Dimethyl Ether Fuelled) City Bus”. 
SAE Paper 2000-01-2005. 2000. 

(?)



Ethanol with ignition improvers 
Diesel engines

[g/kWh] Ethanol 
w/o EGR

Ethanol 
with 
EGR

Euro IV Euro V

NOx 3.5 1.73 3.5 2.0

CO 0.10 0.16 1.5 1.5

HC 0.10 0.16 0.46 0.46

[g/kWh] w/o Catalyst With Catalyst

NOx 3.80 3.30

CO 1.68 0.196

HC 0.73 0.158

Unregulated emissions [g/kWh]

Formaldehyde 0.020

Acetaldehyde 0.031

Ethanol 0.870

Methanol 0.0002

Acetic acid 0.008

Scania

Volvo 

Volvo



Adaptation and optimization of diesel 
engines for bio fuels (oxygenates) 

using HCCI experience  and knowledge

Diffusive combustion



Memories from the 80th 
Diesel engines

• Ignition improvers
• Pilot injection 
• Spark or glow 

plugs
• Residual gas 

ignition 



Recidual gas ignition 
DDA two-stroke diesel engine



Sonex Ultra Clean Burn
• Standard Perkins DI 

diesel engine (CR=17:1)
• Neat Methanol (M100)
• No ignition improver
• No spark or glow plug 

(in cylinder)
• Misfire-free operation 

over the entire load and 
speed range.

• No smoke, lower NOx
H2 O2
CH2 O

Chemical enhancement of ignition



Previous experience of DME



Bio Diesel - RME



Smoke trends: Diesel and RME
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Presenter�
Presentation Notes�
This is a soot bump produced with diesel fuel and RME. RME shows unexpected results!! RME contains about 10% oxygen (in the molecular structure). For RME, soot decreases with increasing EGR, until 40% EGR where it increases drastically. This was reproduced three times. An interesting effect that probably is due to the oxygen-content. If this can be explained, we certainly have yet a key to understanding the soot-bump. (The theory is that soot production decreases with increasing EGR. The oxygen in the fuel keeps the adiabatic flame temperature high enough to keep soot oxidation efficient. Result: decreasing soot until 40% EGR. Above 40% the oxidation maybe becomes poor?) �



NOx trends
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Presenter�
Presentation Notes�
The Nox trend is nearly identical for both fuels. Perhaps slightly higher Nox for RME, indicating that the flame temperature is higher. Nothing unexpected here.�



CO trends
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Presenter�
Presentation Notes�
The CO trends are similar for both fuels. As EGR increases, the flame temperature decreases which lowers the combustion efficiency. More drastically so at higher (50%) EGR rates.�



Hydrocarbon trends
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Presenter�
Presentation Notes�
The HC trends are similar for both fuels. As EGR increases, the flame temperature decreases which lowers the combustion efficiency. More drastically so at higher (50%) EGR rates. Nothing unexpected.�



RME results

NOx
g/km

CO
g/km

HC
g/km

PM
g/km

CO2
g/km

CH4
g/km

Σ PAH
μg/km

Acet- 
aldehyde
mg/km

Form-
aldehyde
mg/km

Benzene
mg/km

RME 16 4.5 0.05 0.3 1080 <0.01 80 10 <2 <2

EC1 12 6 0.7 0.3 1050 0.02 150 20 <10 <10



Lund University and HCCI



Lund (?)



Lund



Lund University



Lund University 

Department of Energy Sciences (former 
Heat and Power Engineering)

(Staff 80 persons)

Lund University
(35000 students)

Lund Institute of Technology
(5000 students)
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Fluid 
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Prof.
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Prof. 
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Power 
Engineering
Prof.
Tord Torrison

Division of 
Combustion 
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Prof. 
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Energy 
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Prof. 
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Prof. 
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Publications on HCCI worldwide



From keynote talk by Pierre Duret 
at IFP International Congress Nov. 26-27 2001.



More 
recent



From keynote talk by Pierre Duret 
at IFP International Congress Sept.  22-23 2004.

Papers on HCCI the last 3.5 years



HCCI activities in Lund
1. Basic engine studies 

Prof. Bengt Johansson
2. Laser diagnostics 

Prof. Marcus Aldén
3. Combustion modeling 

Prof. Xuesong Bai, (Prof. Fabian Mauss)
4. Closed loop combustion control 

Asc. Prof. Per Tunestål
5. Fuel Effect

Asc. Prof. Rolf Egnell



HCCI, CAI, PCCI, pHCCI, PPC, 
LTC…?

• HCCI is normally a concept with port fuel 
injection and high compression ratio.

• CAI is normally a concept with low compression 
ratio and high residual gas concentration with 
negative valve overlap

• PCCI is normally a concept with early direct 
injection forming a rather homogeneous charge

• pHCCI=PCCI
• PPC, partially premixed charge is an bit less 

homogeneous than PCCI i.e. later injection
• LTC is any combustion process giving low NOx 

due to low temperature combustion. 



Partially premixed combustion, PPC
• Def: region between truly 

homogeneous combustion, 
HCCI, and diffusion 
controlled combustion, 
diesel

• Trade-off between NOx 
and HC, soot typical

• Combustion process not 
well known

• Soot the key feature
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PPC potential



Evolution

Otto Diesel

HCCI

SACI PPCSACI=
Spark Assisted
Compression Ignition 

PPC=
Partially Premixed
Combustion

local reactions distributed homogeneous fuel distribution hetrogeneous



Fields of work 2006-2009
Spark assisted 
compression 
ignition, SACI

Partially 
premixed 
combustion,
PPC

Generic diesel 
research, 
GenDies

Engine experiments

Laser diagnostics

Modelling

Combustion control

Fuel effects



HCCI activities in Lund

1. Basic engine studies
2. Laser diagnostics 
3. Combustion modeling - Chemical 

kinetics
4. Closed loop combustion control
5. Fuel effect



Volvo TD100 engine



First 
VCR 

system



Multifuel capability



Multifuel capability



With 
Variable Compression Ratio, 

VCR, 
the HCCI engine can use 

ANY 

liquid or gaseous fuel!



Low NOx from HCCI mode
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Hydrogen?



Hydrogen HCCI

SAE paper 2004-01-1976, presented at SAE fuel and lubricants meeting Toulouse, France , June 2004



HCCI activities in Lund

1. Basic engine studies
2. Laser diagnostics 
3. Combustion modeling - Chemical 

kinetics
4. Closed loop combustion control
5. Fuel effect



Closed loop combustion control, 
CLCC
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Control Parameters
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6-cylinder HCCI Engine with dual fuel
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Combustion timing
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Presentation Notes�
Combustion phasing (CA50) shows a very nonlinear dependence on fuel ratio (octane number). Each line represents a specific operating point (load, speed, intake temperature)�



Sensitivity Estimation
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Unstable operation possible with CLCC
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HCCI activities in Lund

1. Basic engine studies
2. Laser diagnostics 
3. Combustion modeling - Chemical 

kinetics
4. Closed loop combustion control
5. Fuel effect



HCCI-fuel

HCCI fuel index to be developed
– Diesel engine has cetane number CN
– SI engine has octane number, 

RON and MON
– But HCCI is a different process
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Ignition temperature



BMEP

RPM

HCCI regime

Knock limit

Miss-fire limit. High CO limit

HCCI fuel specification
Fuel parameters:
• CN
• RON
• MON
• Boiling range
• Flammability limits
• Heat of vaporization
• Ignitability
• Laminar flame speed
• Reid vapor pressure
• Spontaneous ign. temp.
• Other?
• New?
Test conditions:
• CR
• Inlet temperature
• Boost
• EGR – Residual gases
• Premixed  – DI
• HCCI – CAI 



Summary

• HCCI needs a fuel rating similar to 
Research Octane Number,RON, Motor 
Octane Number, MON and Cetane 
Number, CN

• Alternative fuels containing oxygen can 
reduce soot significant

• HCCI techniques can be used to improve 
normal diffusion combustion of alcohols



Thank you!
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