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Introduction

Power

 

generation

 

with pre-combustion CO2

 

-capture:

-part of work package 2.3 ’H2-rich combustion’

 

of the EU research project ENCAP 
(ENhanced CAPture)
-among partners: SINTEF, DLR, ALSTOM, SIEMENS, RWE, VATTENFALL, STATOIL

Graphics:

 

Siemens
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Hydrogen Non-premixed Combustion at Elevated Pressures:
Premixed H2-combustion requires very high burner velocities to avoid 
flashback, this implies large pressure losses in GT-operation
Little experimental data available for hydrogen combustion under GT-
conditions (high pressures), this work provides experimental data for 
validation of CFD-models

Nitrogen-dilution of the Hydrogen Fuel:
Reduces reactivity of hydrogen (increase its ignition delay time) for safe 
operation and avoids burner damage
Reduces flame temperature and NOx-formation level
To be preferred over steam because a) steam causes higher metal 
temperatures of the hot-gas components and b) steam increases the 
cost of operation and ownership, and c) within the context of the ENCAP 
project, N2 is available from IGCC plant

Motivation
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Previous Work
Hydrogen combustion chemistry benchmarking for pure

 
H2

 

/O2

 
kinetics (Strohle et al. C&F 2006):

no hydrocarbons considered
N2 treated as inert (NOx chemistry not included)
N2 acts as a third body
high pressure conditions

DLR GT-model burner tested for (Weigand et al. C&F 2006):
Methane fuel
Atmospheric conditions

All present measurements performed by Rainer Lückerath of 
DLR in Stuttgart (scheduled for publication).
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Relevant H2
 

-Combustion
 

Mechanisms

Group Authors Reactions Pressure

GRI-Mech [1.2]   Frenklach

 

et al. (1995)
[2.11] Bowman

 

et al. (1999)
[3.0]   Smith et al. (2002)

58 1-2 atm

Dryer Yetter

 

et al. (1991)
Kim et al. (1994)
Mueller

 

et al. (1999)
Li et al. (2004)

38 0.3-2.2 atm 
1-9.6 atm 
0.3-15.7 atm 
0.3-87 atm

Ó

 

Conaire Ó

 

Conaire

 

et al. (2004) 42 0.05-87 atm
Warnatz Baulch

 

et al. (1991)
Warnatz

 

(2004)
38

Leeds Hughes

 

et al. (2001) 46

Selected for validation against 
experimental data at high 
pressures (Strohle

 

et al. C&F 2006)
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H2
 

/O2
 

Turbulent Combustion
 

Modeling

SPIDER (SINTEF):
•EDC combustion model and detailed chemical kinetics solver already 
present
•H2

 

-combustion implemented comparing several detailed mechanisms (Li, 
GRI-Mech, Warnatz…)

FLUENT (for ALSTOM):
•EDC combustion model present
•No external stiff-equations solver implemented (use built-in solver)
•H2

 

-combustion implemented in a 11-step reduced mechanism

CFX (for SIEMENS):
•EDC combustion model implemented
•Detailed chemical kinetics solver implemented as user library (including 
LIMEX and ChemKin)
•H2

 

-combustion implemented in a 11-step reduced mechanism



8SINTEF Energy Research

Case Configuration (1)
•Two co-

 rotating swirl 
generators for 
the air supply

•One annular 
multi-channel 
ring injector in 
between the 
swirled flows

•Maximum 
thermal power 
up to 1.3 MW

•CL and PLIF 
of flame @ 5, 
10, 20 barsGraphics: DLR (Rainer Lückerath)
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Case Configuration (2)

Gas supply!

Graphics: DLR (Rainer Lückerath)
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Case Configuration (3)
•¼

 

of the physical domain 
is simulated
•FV CFD-solver on a 
structured non-orthogonal 
mesh
•k-e

 

turbulence model 
coupled with the EDC 
turbulent combustion 
model
•11-step reduced 
hydrogen chemistry
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Flame Dependency on Dilution Level (1)

Graphics: DLR (Rainer Lückerath)
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Flame Dependency on Dilution Level (2)

H2

 

=60% , N2

 

=40%

H2

 

=95% , N2

 

=5%
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Flame Dependency on Dilution Level (3)

H2

 

=95% , N2

 

=5%



14SINTEF Energy Research

Flame Dependency on Dilution Level (4)
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=60% , N2
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Flame Dependency on Dilution Level (5)
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Flame Dependency on φ
 

(1) H2

 

=95% , N2

 

=5%

richer flame leaner flame
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Flame Dependency on φ
 

(2) H2

 

=60% , N2

 

=40%

richer flame leaner flame
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Flame Dependency on φ
 

(3) H2

 

=95% , N2

 

=5%

richer flame

leaner flame
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Flame Dependency on φ
 

(4) H2

 

=60% , N2

 

=40%

richer flame

leaner flame
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Conclusions and Further Work
•

 

Flame shape, position and structure seems to be well captured by

 

the CFD
•

 

Flame is strongly dependent on the dilution level resulting in a

 

classical swirl-flame for the 
5%-dilution case (low fuel axial momentum) and in a jet-flame for the 40%-dilution case 
(high fuel axial momentum)

•

 

No large effect of pressure on the flame shape and position is observed between 10 and 20 
bars operating conditions

•

 

No blow-off limit found even for very lean conditions (φ~0.3) both in experiments and 
simulations

•

 

No significant pulsation or flame instability could be detected
•

 

NOx

 

level between several hundred ppm

 

(@ 15% O2

 

) for the 5%-dilution case and 6 ppm

 
for the leanest 40%-dilution case

•

 

Simulations with the 11-steps reaction mechanism gives significantly lower peak 
temperatures and thus NO formation compared to the infinitely fast chemistry assumption

•

 

Glarborg

 

model (simple data postprocessing) gives correct order of magnitude estimates for 
NO-formation rate

•

 

CARS temperature measurements are the next task at DLR

Thank you for your attention!
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