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Motivation

I Development of capabilities for modelling and prediction of
premixed combustion under gas-turbine-like conditions

I high pressures and temperatures
I lean hydrocarbon fuels with hydrogen enrichment

I Lean Premixed Combustion with Hydrogen Enrichment
I high efficiency gas turbine combustion
I reduced carbon dioxide production and NOx emissions
I paves the way for hydrogen combustion

I Technical Challenges
I flame stability, sensitivity to fuel-to-air ratio fluctuations and

thermo-acoustic oscillations
I issues: local extinction, combustion instabilities, blow out,

and flash back
I theoretical and computational models unable to fully explain

experimental observations
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Numerical Modelling of Premixed Combustion

Large Eddy Simulations (LES)
I intermediate between DNS and RANS: larger-scale motions resolved

I separation of scales via a low-pass spatial filtering procedure

I proving to be a valuable in modelling turbulent non-reacting flows

I while promising, still under development for turbulent reactive flows

Some of the Challenges
I complex chemical kinetics

I chemical reaction scales smaller than filter size

I in many cases, turbulence-chemistry interactions must be entirely
modelled

I control of numerical, filtering (commutation and aliasing), subfilter scale
modelling errors
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Borghi-Peters Regime Diagram
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Canadian Research Initiative

Collaborators
I Ö. Gülder and C. Groth (University of Toronto)
I G. Smallwood, F. Liu, H. Guo (NRC ICPET)
I 7-8 graduate students

Research
I Numerical and experimental research program
I 5 numerical tasks
I 3 experimental tasks

A Key Outcome
I development of Large Eddy Simulation (LES) capabilities

for turbulent lean premixed combustion
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Numerical Tasks

I Subgrid Scale Modelling: Thickened Flame with
Power-Law Flame Wrinkling Subgrid Scale Model for
Lean-Premixed Combustion

I Subgrid Scale Modelling: Flame Surface Density (FSD)
Subgrid Scale Model for Lean-Premixed Combustion

I Subgrid Scale Modelling: G-Equation Subgrid Scale Model
for Lean-Premixed Combustion

I LES: Development of Grid-Independent LES Capabilities
for Turbulent Reacting Flows

I Hydrogen Enrichment: Effects of Hydrogen/Reformation
Gas Addition on Flammability Limit and NOx Emission in
Lean Counterflow CH4/Air Premixed Flames
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LES Filtering

Low-pass spatial filtering of flow quantities G:

Ḡ(x, t) =
∫ ∫ ∫

Vsf

F(x − x′;∆(x))G(x′, t) d3x′

Mass-weighted (Favre) spatial filtering:

ρ̄G̃(x, t) =
∫ ∫ ∫

Vsf

ρF(x − x′;∆(x))G(x′, t) d3x′

Consistency: ∫ ∫ ∫
Vsf

F(x − x′) d3x′ = 1
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Filtered Navier-Stokes Equations

∂ρ̄

∂t
+

∂(ρ̄ũj)

∂xj
= 0

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũi ũj + δij p̄)

∂xj
− ∂σ̃ij

∂xj
= − ∂τij

∂xj︸︷︷︸
I

+
∂(σ̄ij − σ̃ij )

∂xj︸ ︷︷ ︸
II

∂(ρ̄Ỹn)

∂t
+

∂(ρ̄Ỹnũj)

∂xj
+

∂J̃j,n

∂xj
= − ∂[ρ̄(Ỹnuj − Ỹnũj)]

∂xj︸ ︷︷ ︸
IX

− ∂(J̄j,n − J̃j,n)

∂xj︸ ︷︷ ︸
X

+ ¯̇ωn︸︷︷︸
XI

p̄ = ρ̄RT̃ +

N∑
n=1

Rnρ̄(ỸnT − ỸnT̃)︸ ︷︷ ︸
XII
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Filtered Navier-Stokes Equations

∂(ρ̄Ẽ)

∂t
+

∂[(ρ̄Ẽ + p̄)ũj ]

∂xj
−

∂(σ̃ij ũi)

∂xj
+

∂q̃j

∂xj
= −

∂[ρ̄(ũjhs − ũj h̃s)]

∂xj︸ ︷︷ ︸
III

+
∂(σ̄ij ũi − σ̃ij ũi)

∂xj︸ ︷︷ ︸
IV

+
∂(uiσij − ũi σ̄ij )

∂xj︸ ︷︷ ︸
V

−
1

2

∂[ρ̄(ũjuiui − ρ̄ũj ũiui)]

∂xj︸ ︷︷ ︸
VI

+
∂(q̄j − q̃j)

∂xj︸ ︷︷ ︸
VII

−
∂[

∑N
n=1 ∆h0

f ,nρ̄(Ỹnuj − Ỹnũj)]

∂xj︸ ︷︷ ︸
VIII
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Subfilter Scale Modelling and Closures

I Subfilter scale stresses (term I ): τij = −2µt

(
S̃ij − 1

3δij S̃ll

)
+ 2

3δij ρ̄k̃

I eddy-viscosity models
I Smagorinsky (1963) & Yoshizawa (1986) models
I one-equation model

I Subfilter scale scalar transport (term IX ):

ρ̄(Ỹnuj − Ỹnũj) = −
µt

Sct

∂Ỹn

∂xj

I Subfilter scale enthalpy transport (term III ):

ρ̄(ũjhs − ũj h̃s) = −
µt

Prt

∂T̃

∂xj

I Subfilter turbulent diffusion (term VI , Knight et al. , 1998):

ρ̄(ũjuiui − ρ̄ũj ũiui)

2
= τij ũi
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Subfilter Scale Stress Models

Smagorinsky & Yoshizawa Models

Smagorinsky eddy-viscosity model (1963):

τij −
δij

3
τkk = −2ρ̄νtS̃ij , νt = C2

s∆
2|S̃| , |S̃| = (2̃Sij S̃ij )

1/2 , Cs ≈ 0.10-0.24

Yoshizawa model (1986):

τkk = CI 2ρ̄∆2|S̃|2 , CI ≈ 0.09-0.005

One-Equation Model

Eddy-viscosity:
νt = Cv

√
k∆ , Cv ≈ 0.086-0.09

k̃-equation:
∂(ρ̄k̃)

∂t
+

∂(ρ̄k̃ũi)

∂xi
= P− ε +

∂

∂xk

(
ρ̄

νt

Prt

∂k̃
∂xk

)
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Turbulence-Chemistry Interaction Models

Modelling Approaches for Premixed Combustion
I Thickened Flame Model

I Butler & O’Rourke, 1977; Colin et al. , 2000
I power-law flame wrinkling model (Charlette et al. , 2002)

I Flame-Surface Density (FSD) Model
I Hawkes & Cant, 2000, 2001; Tullis & Cant, 2003

I G-Equation Model
I Williams, 1985; Kerstein& Williams, 1988; Peters, 2000;

Pitsch & Duchamp de Lageneste, 2002
I Laminar Flamelet Models

I models based on the flamelet concept
I Bray et al. , 1985; Peters, 1999;
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Computational Framework

Key Elements I:
I Finite-Volume Formulation

I reliable, robust, & accurate spatial discretizations
I Block-Based Adaptive Mesh Refinement

I body-fitted multi-block mesh
I local anisotropic mesh refinement

I Parallel Implementation Via Domain Decomposition
I efficient and scalable algorithm

I Low-Mach Number Local Preconditioning
I Weiss & Smith (1995)
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Computational Framework

Key Elements II:
I Parallel Implicit Time-Marching Scheme

I Newton-Krylov-Schwarz (NKS) approach for steady
combustion (Keys and co-researchers, 1998, 2001; Groth &
Northrup, 2005)

I dual-time-stepping approach for unsteady combustion
I Development for Laminar and RANS

I Northrup & Groth, 2005; Gao & Groth, 2005
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Non-Premixed Laminar Diffusion Flame

3 Levels of Refinement
195 Blocks (4x8)
6240 Cells

Inititial Level
96 Blocks (4x8)
3072 Cells
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5 Levels of Refinement
396 Blocks (4x8)
12672 Cells

4 Levels of Refinement
327 Blocks (4x8)
10464 Cells

2 Levels of Refinement
126 Blocks (4x8)
4032 Cells

5 refinements, 5 levels of refinement, 396 (4x8) blocks = 12672 cells
Groth and Gülder Gas Turbine Combustion: Turbulent Lean Premixed Combustion



University of Toronto Institute for Aerospace Studies
Computational Fluid Dynamics & Propulsion Group

Non-Premixed Laminar Diffusion Flame
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Non-Premixed Laminar Diffusion Flame
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Newton-Krylov Convergence

Equivalent residual evaluations
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Non-Premixed Laminar Diffusion Flame
Parallel Performance with 96 blocks
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Parallel Speedup Sp = t1/tp , Parallel Efficiency Ep = Sp/p
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Improved LES Capabilities

Grid-Independent LES
I explicit discrete filtering, adaptive mesh refinement (AMR)
I allow assessment and validation of subfilter scale models

High-Order Finite Volume Schemes
I high-order central essentially non-oscillatory (CENO)

solution reconstruction (Ivan & Groth, 2006)
I parallel implementation with AMR

Least-Squares Discrete LES Filters
I high-order commutative discrete filters based on

least-squares solution reconstruction

Groth and Gülder Gas Turbine Combustion: Turbulent Lean Premixed Combustion
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Thickened Flame Model

Modified Species Transport Equations

∂(ρ̄Ỹn)
∂t

+
∂(ρ̄Ỹnũj)

∂xj
= −

∂(EFJ̃j,n)
∂xj

−
∂[EFρ̄(Ỹnuj − Ỹnũj)]

∂xj
+

E¯̇ωn

F

D → FED, µ → FEµ, ω̇ → Eω̇/F

Power-Law Flame Wrinkling Model

sT∆

s0
l

=
Asfs

∆2 = Ξ∆ =
(

1 +
∆
ηc

)β

= E , ηc =| 〈∇ · ns〉 |−1

where E is the efficiency factor, Ξ∆ is the subfilter wrinkling
factor, and ηc is an inner cutoff scale
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Thickened Flame Model

Efficiency Function (Charlette et al. , 2002)

| 〈∇ · n〉s |= ∆−1u′∆
s0
l

Γ
(

∆
δ0

l

,
u′∆
s0
l

, Re∆

)
Γ

(
∆
δ0

l

,
u′∆
s0
l

, Re∆

)
= {[(f−a

u + f−a
∆ )−1/a]−b + f−b

Re }
−1/b ,
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Thickened Flame Structure
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Freely Propagating Methane/Air Flame

Chemical Kinetic & Thermodynamic/Trasport Models
I 2-step 6-species reduced chemical kinetic scheme (Westbrook & Dryer,

1981):
2 CH4 + 3 O2 
 2 CO + 4 H2O

2 CO + O2 
 2 CO2

I thermodynamic & transport properties (Gordon & McBride, 1994, 1996)

I mixture viscosity and thermal conductivity rules of Wilke (1950) and
Mason & Saxena (1964)
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Thickened-Flame/Powerlaw-Flame-Wrinkling Model
Solutions

Parameters Characterizing Premixed Flame:

φ = 1, ū = s0
l , u′ = 2.53 m/s, ` = 7.3 mm, λ = 1.34 mm,

Rè = 1164, Reλ = 213, s0
l = 0.406 m/s, and δ0

l = 0.27 mm.

Calculations Performed in Three Steps:
I 1D laminar flame solution
I Wrinkling of the flame front by 2D homogenous turbulence

without reactions (Rogallo, 1981)
I 2D wrinkled flame front with reactions

CH4, F = 10 CH4, F = 5

CO, F = 10 CO, F = 5
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Predicted Turbulent Flame Structure

I Distributions of CH4 mass fraction at t = 0.98 ms (after 2.8
eddy turnover times)

I F = 5, 10, 20
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Predicted Turbulent Flame Structure

I Distributions of CO mass fraction at t = 0.98 ms (after 2.8
eddy turnover times)

I CO enhancement in positive cusps (Echekki & Chen,
1996; Hawkes & Chen, 2004)
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Predicted Turbulent Burning Rate

Rate of consumption of methane: st = 1
ρ0Y0Ly

∫
A

¯̇ωFdA

Burning rate, F = 5, 10, 20

Gülder expression (1990) Average burning rate (F=10)
1.5 m/s 1.544 m/s
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Predicted Turbulent Burning Rate

Rate of consumption of methane: st = 1
ρ0Y0Ly

∫
A

¯̇ωFdA
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Predicted Turbulent Flame Structure Using AMR

I Computational mesh and distributions of CH4 and CO
mass fractions at t = 0.245 ms

I 4 levels of mesh refinement, 8×8 solution blocks, 600-700
blocks

Groth and Gülder Gas Turbine Combustion: Turbulent Lean Premixed Combustion



University of Toronto Institute for Aerospace Studies
Computational Fluid Dynamics & Propulsion Group

Flame Surface Density (FSD) SFS Model

The flame surface density (FSD) model of Hawkes and Cant
(2000, 2001) is being developed for predicting premixed
combustion via LES

c =
T − Tu

Tb − Tu
or c =

YF − Yu
F

Yb
F − Yu

F

0 ≤ c ≤ 1

∂

∂t
(ρc̃)+

∂

∂xi
(ρũi c̃)+

∂

∂xi
ρ (ũic− ũi c̃)=

∂

∂xi

(
ρD

∂c
∂xi

)
+¯̇ωc=ρsd|∇c|

ρsd|∇c| ≈ ρusLΣ

∂Σ
∂t

+
∂

∂xi
(ũiΣ) = − ∂

∂xi
((ui)

′
sΣ)+(Smean+Shr +Ssg)Σ+Pmean+Psg
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G-Equation SFS Model

A G-equation approach is being developed for predicting
premixed combustion via LES. Assumes thin flame surface and
flame-front position is represented with a constant value of the
level set function, G (Williams, 1985; Kerstein& Williams, 1988;
Peters, 2000; Pitsch & Duchamp de Lageneste, 2002).

∂(ρ̄G̃)
∂t

+
∂(ρ̄ũiG̃)

∂xi
= ρw|∇G|

w = s̄T
s̄T

sL
= 1 + α

(
ū′

sL

)q
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Concluding Remarks

I Overview of numerical modelling of premixed combustion
processes: motivation, numerical challenges, and
approaches

I Described numerical results for
thickened-flame/powerlaw-flame-wrinkling model

I Future Research
I Moving to three-dimensional turbulence
I Comparison of subfilter scale models
I Use of high-order spatial and temporal discretizations
I Use of explicit filtering based on high-order commutative

discrete filters
I Study of hydrogen enrichment of methane
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Experimental Method Experimental Setup

Flame and Flow Parameters

Axisymmetric Bunsen-type burner
nozzle diameter of 11.2mm
turbulence was generated by perforated plates 3-diameter lengths
upstream of the burner nozzle.

Methane/air mixtures were selected to provide:

Exit velocities 14.43, 14.62, 14.77 m/s
Turbulent intensities (u′) 1.37, 1.41, 1.81 m/s
Equivalence ratios (φ) 0.6, 0.7, 0.8, 0.9, 1.0
Non-dimensional turbulent
intensities (u′/SL)

3.4 - 15.3
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Experimental Method Experimental Setup

Planar Rayleigh Scattering Setup

Nd-YAG 
Laser @ 
355nm

ICCD 
Camera

Telescoping 
LensesBurner 

Assembly

Cylindrical 
Lens
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Experimental Method Experimental Setup

Planar Rayleigh Scattering Setup

Nd:YAG Laser
355 nm

Cylindrical Lens 
f = -25 mm

Plano-Convex Lens 
f = 100 mm

Plano - Concave Lens 
f = -75 mm

ICCD Camera

Camera 
Objective

Band Pass 
Filter 355 nm

Beam 
Dump

Co-Flow

 Burner Nozzle

ICCD Info:
Array Size: 1024 x 1280 pixel

Pixel Size:  6.7 µm
Resolution: 45 µm

Capture Area: 46mm x 57mm

2
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Results and Discussion Result Plots

Effects of Non-Dimensional Turbulent Intensities
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Results and Discussion Result Plots

Effect of Equivalence Ratio
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Background

• Lean premixed combustion is a promising concept for 
significantly improving fuel conversion efficiency and reducing 
pollutant emissions;

• Lean premixed flames are less stable, due to the narrow 
flammable range at leaner condition;

• Hydrogen enrichment can enlarge the flammable range of lean 
premixed flames, and thus improve flame stability;

• Hydrogen can be obtained by fuel reforming;
• A reformate gas contains not only hydrogen, but also carbon 

monoxide and other components; 
• Will reformate gas enrichment be helpful?



Objectives

• Investigate the effect of reformate gas enrichment on extinction 
characteristics of CH4 /air premixed flames;

• Study the mechanisms of NOX formation in reformate gas 
enriched CH4 /air lean premixed flames.



Flame Configuration

Stagnation plane

Twin flames

CH4 /reformate gas/airCH4 /reformate gas/air



Numerical Model

• Potential boundary conditions;
• Adaptive refinement of meshes;
• Atmosphere pressure, and room temperature, 300 K;
• Radiation: optically thin model;
• Reaction scheme: Gri-Mech 3.0;
• Reformate gases: partial oxidation of CH4

2CH4 + O2 + γN2 = 2CO + 4H2 + γN2

γ

 

= 0   --- reformate gas 1 
γ

 

= 3.76 --- reformate gas 2

Enrichment fraction: αα

 
rgrg = V= Vrgrg /(V/(Vrgrg +V+VCH4CH4 ))



Extinction Limits of 
Pure CH4 /Air Flames
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Extinction Limits

The addition of a reformate gas does enlarge the flammable range 
and lower the flammability limit.
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NO Formation

• The addition of reformate gas 1 always increases the formation of NO;
• The effect of reformate gas 2 addition on NO formation depends on 

equivalence ratio, because of the variation in flame temperature.
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Flame Temperature

f = 0.65
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Variation of NO Formation 
Mechanism (φ

 
= 0.9, 

reformate gas 2)

φ = 0.9, a = 30 s-1
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• The addition of reformate gas reduces the contributions of the prompt and 
thermal routes, because of the decrease in CH concentration and flame 
temperature;

• The contribution of the NNH intermediate route increases, because: NNH = N2 
+ H, OH + H2 = H2 O + H, CO + OH = H + CO2 .
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Variation of NO Formation 
Mechanism (φ

 
= 0.65, 

reformate gas 2)

• Reformate gas addition significantly increases the contribution of the NNH 
route and slightly increases that of the thermal route;

• But reformate gas addition reduces the contribution of the prompt route.

φ = 0.65, a = 30 s-1
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NO Formation

• The formation of NO can be significantly reduced in a 
reformated gas enriched flame, by operating under 
leaner condition.
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NO2 Formation
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• At a lower equivalence ratio, the addition of a reformate gas reduces the formation of 
NO2 , with the addition of reformate gas 1 being more effective;

• At φ

 

= 0.9, the addition of reformate gas 2 is more effective to reduces the formation of 
NO2 than that of reformate gas 1.

• HO2 + NO = NO2 + OH
• NO2 + H = NO + OH



N2 O Formation

• At a constant φ, the addition of a reformate gas reduces the formation of N2 O, because of the 
increase in the N2 O destruction rate;

• At a constant enrichment fraction, the formation of N2 O increases with the decrease of 
equivalence ratio, except for the flame close to extinction.

Equivalence ratio

0.5 0.6 0.7 0.8 0.9

N
2O

 e
m

is
si

on
 in

de
x,

 g
-N

2O
/J

0.0

1.0e-10

2.0e-10

3.0e-10

4.0e-10

5.0e-10

6.0e-10

7.0e-10

8.0e-10

Pure CH4

40% reformate gas 1 added
40% reformate gas 2 added

• N2 O (+M) = N2 + O (+M)
• N2 O + H = N2 + OH



Conclusions

• The addition of a reformate gas enlarges the flammable range and 
lowers the flammability limit of stretched lean CH4 /air premixed flame;

• The reformate gas enrichment allows a combustor to operate at leaner 
condition;

• Although the addition of a reformate gas may increase the formation of 
NO at a constant equivalence ratio, it can significantly reduce the 
emission of NO by allowing a combustor to operate under leaner 
condition;

• At a leaner operating condition, the formation of NO2 and N2 O 
relatively increases. However, the addition of a reformate gas can 
moderate this effect.
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