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Rationale for fuel research

Departures in femperature in °C (from the 1961-1990 average)
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BIOMASS FOR HEAT OR AS TRANSPORTATION FUEL?
A COMPARISON BETWEEN TWO MODEL BASED STUDIES
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This figure is copied from: Azar, C. “Okad levnadsstandard och minskade utslapp — En omojlig kombination?”.
Det Naturliga Steget Nr 4-00/1-01. Translations made by Rolf Egnell
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Forecast 3

OIL AND GAS LIQUIDS
2004 Scenario
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But coal lasts for at least another 200 years!
Source: Aspo http://www.peakoil.net/
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Forecast 4
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Swedish Energy Administration

Source: Oljans andlighet — ett rorligt mal. ER 2006:21

Figur 8 Uthalligheten med 2 % arlig ékning i eftertragan
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Predictable future

There will be new fuels on the market =»
adaptation

Fuel prices will increase =» low fuel consumption

Concern of the climate = CO, neutral feedstock
(bio mass and fossil plus carbon sequestration

Maintained or sharpened emission standards =
Further developed combustion processes and
exhaust after treatment



Production of fuels from different feedstock
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The impact of fuel

Oxygenates



Ratio of smoke
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Adiabatic flame temperture
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Dimethylether — DME

ECE R49 [g/kWh] Project results Euro 111 Euro IV EuroV
ESC from Euro IV

NOXx 2.99 5.0 3.5 2.0
HC 0.12 0.66 0.46 0.46
CO 0.25 2.1 15 15
PM <0.02 0.1 0.02 0.02

Source: Hansen, K. F. et al "Demonstration of a DME (Dimethyl Ether Fuelled) City Bus”.
SAE Paper 2000-01-2005. 2000.



Ethanol with ignition improvers

Diesel engines

[o/kwh] | Ethanol | Ethanol | EurolV | EuroV
w/o EGR with
EGR
NOXx 3.5 1.73 3.5 2.0
Scania [ 0.10 0.16 15 15
HC 0.10 0.16 0.46 0.46
[o/kWh] w/o Catalyst With Catalyst
NOX 3.80 3.30
volvo CO 1.68 0.196
HC 0.73 0.158
Unregulated emissions [o/kWh]
Formaldehyde 0.020
Volvo Acetaldehyde 0.031
Ethanol 0.870
Methanol 0.0002
Acetic acid 0.008




Adaptation and optimization of diesel
engines for bio fuels (oxygenates)
using HCCI experience and knowledge

Diffusive combustion



Memories from the 80th
Diesel engines

PILOT

Ilgnition improvers

Pilot injection ____awonoL, /?ESLEL
Spark or glow &
plugs
Residual gas
ignition

AIR SWIRL



Recidual gas ignition
DDA two-stroke diesel engine
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Sonex Ultra Clean Burn

Standard Perkins DI
diesel engine (CR=17:1)
Neat Methanol (M100)
No ignition improver

No spark or glow plug
(in cylinder) 1

Misfire-free operation
over the entire load and
speed range. H,0,

CH.O
No smoke, lower NOX :

Chemical enhancement of ignition



Previous experience of DME
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Smoke trends: Diesel and RME
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Presenter�
Presentation Notes�
This is a soot bump produced with diesel fuel and RME. RME shows unexpected results!! RME contains about 10% oxygen (in the molecular structure). For RME, soot decreases with increasing EGR, until 40% EGR where it increases drastically. This was reproduced three times. An interesting effect that probably is due to the oxygen-content. If this can be explained, we certainly have yet a key to understanding the soot-bump. (The theory is that soot production decreases with increasing EGR. The oxygen in the fuel keeps the adiabatic flame temperature high enough to keep soot oxidation efficient. Result: decreasing soot until 40% EGR. Above 40% the oxidation maybe becomes poor?) �


NOx trends
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Presenter�
Presentation Notes�
The Nox trend is nearly identical for both fuels. Perhaps slightly higher Nox for RME, indicating that the flame temperature is higher. Nothing unexpected here.�
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Presenter�
Presentation Notes�
The CO trends are similar for both fuels. As EGR increases, the flame temperature decreases which lowers the combustion efficiency. More drastically so at higher (50%) EGR rates.�


Hydrocarbon trends
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Presenter�
Presentation Notes�
The HC trends are similar for both fuels. As EGR increases, the flame temperature decreases which lowers the combustion efficiency. More drastically so at higher (50%) EGR rates. Nothing unexpected.�


RME results

NOX CO HC PM CO, CH, >~ PAH Acet- Form- Benzene
g/km | g/km | g/km | g/km | g/km g/km ug/km aldehyde aldehyde mg/km
mg/km mg/km
RME 16 4.5 0.05 0.3 1080 <0.01 80 10 <2 <2
EC1 12 6 0.7 0.3 1050 0.02 150 20 <10 <10




Lund University and HCCI
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HCCI in Lund 1997

[IIELEIIEEIGenieliol
[HNSUONIRAOEESSES

Per Amnéus  Magnus Christensen

Mattias Richter

Wartsila
Diesel



neisnee Caneiar _Caterpillar

m mson reeesses - Wartsila

Per Tunestal ~ Carl Wilhelmsson Hakan Persson
PEE Mattias Richter Xue-song Bai  Leif Hildingsson
Rolf Egnell _ i
- @ @ . 5
ittorio Manente
awa

Uwe Horn

Mehrzad Kaiadj




Publications on HCCI worldwide

IFP International Congress * November 26 -27, 2001 » Rueil-Malmaison, France

A NEW GENERATION OF
ENGINE COMBUSTION
PROCESSES

FOR THE FUTURE?

Edited by Pierre Dure

Editions TECHNIP



Main publications (1999-2001)
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From keynote talk by Pierre Duret
at IFP International Congress Nov. 26-27 2001.



IFP International Conference * September 22-23, 2004 » Rueil-Malmaison, France

WHICH FUELS FOR
LOW CO, ENGINES? More
recent

and Xavier Montagne
v, ."'l n - i

"l

Editions TECHNIP




Papers on HCCI the last 3.5 years

Musashi Institute of T echnology
AVL List
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Bruneal University
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Chalmers University
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L und Institute of Technology

From keynote talk by Pierre Duret
at IFP International Congress Sept. 22-23 2004.



HCCI activities in Lund

. Basic engine studies
Prof. Bengt Johansson

. Laser diagnostics
Prof. Marcus Aldén

. Combustion modeling
Prof. Xuesong Bai, (Prof. Fabian Mauss)

. Closed loop combustion control
Asc. Prof. Per Tunestal

. Fuel Effect

Asc. Prof. Rolf Egnell



HCCI, CAl, PCCI, pHCCI, PPC,
LTC...?

HCCI is normally a concept with port fuel
Injection and high compression ratio.

CAl is normally a concept with low compression
ratio and high residual gas concentration with
negative valve overlap

PCCIl is normally a concept with early direct
Injection forming a rather homogeneous charge

DHCCI=PCCI

PPC, partially premixed charge is an bit less
nomogeneous than PCCI i.e. later injection

_TC Is any combustion process giving low NOXx
due to low temperature combustion.




Partially premixed combustion, PPC

1200

e Def: region between truly
homogeneous combustion,
HCCI, and diffusion
controlled combustion,
diesel

 Trade-off between NOXx
and HC, soot typical
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Nozzle 8x0.18x120, SOl -33 ATDC, 1200 rpm CR- pres 1500 bar

3 280

O

-60 50 -40 -30 -20 10 O

PPC potential

[— Cylpresfbarl | ,  Pinl=242bar
- ROHR/S [J/ICAD] | B Pexh =2.46 bar |
""""""" NeedIeLlft [AU] ;E éTlnI 22 OC

e b e

EGR = 52 % i

|'|'\')|'|éb'r'{liéénbéf _________________________________________________________ ______________________________________________________________________________ ]

= é”éuéAb ___________________________________________________________ e e ]

B e A ]

== 971% A ]

Nd& _______ é”b'b'ﬁi ________________________________________________________________________________________ N ]
- - SRR S ! -.rsé!!'..'rr.'.-,,,,..,i,,..."n" th Jb’u'u‘v\ i,ym ﬁ%a.n,w

10 20 30 40 50 60
CAD



Evolution

local reactions distributed homogeneous  fuel distribution hetrogeneous

) »

T —

SACI= gpr(t:i:n Premixed
Spark Assisted artially Fremixe
Combustion

Compression Ignition



Fields of work 2006-2009

Spark assisted | Partially Generic diesel
compression premixed research,
ignition, SACI | combustion, GenDies

PPC

Engine experiments

Laser diagnostics

Modelling

Combustion control

Fuel effects




HCCI activities in Lund

1. Basic engine studies
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Multifuel capability

lso-octane & MN-heptane

a0l

ol UoIssalduion)

L -

o -

i
-
—

Inlet Air Temp [°C]

Cctane Number



Multifuel capability

Zasoling & Diesel fusl
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With
Variable Compression Ratio,
VCR,
the HCCI engine can use

ANY

liguid or gaseous fuel!



Low NOx from HCCI mode

Gasoline & Diesel fuel
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Hydrogen?



Hydrogen HCCI

2004-01-1976

Hydrogen as Homogeneous Charge
Compression Ignition Engine Fuel

Stenlaas, O.. Christensen, M., Egnell, R. and Johansson, B,
Heat and Power Enginsening Department, Lund Institute of Techaokogy

Copyrghl © 04 Socsly of Aulceoive Emgreen, Ind

ABSTRACT

Hysrogen Pad biter proposed i 0 possible fusl for
sulomctive  dppltations.  Thi  papsd rpors an
waparimanial ivestipation of Bydrogen s HCCI enging
Mlmmﬁnnp«mulmnuﬁmw
1 nn an HCCH engine on BN guinemsly
f-luwmg'qlwdﬂnmmnnmnntw
th efancy, the e th
of kb

The sxpenments were conducied on a single-cylinder
resaarch engine with 8 diplacesent volume of 1.8 lires
and pancake comisrstion chamber geometry. Varation
of lambda, engine speed, compresscn ratic and intake
mmpsratre wens parts of the axpenimental seming. The
engne  wal  cperated In Homopenous  Charge
Compression igniion (HCCIH) mode and a3 comparnison
aho m Spadk ignison (51} moe

Hyptogen was found % be & possitie tuH tr am HCCI
aenging. The heal rebsass rale was sxremsty high and
the interval of possitle star of combusSon orank angles
witd faund 10 B8 namos. The high rate of heat reauss
limised the cpaiating rangs 1o lees (1>3) condisens. On
the other hand opefation on extremely lean micures
(hmi) wnd Tournd podaible. The poldible ODETEing rangs
wad investigabed when ks gas Emperaiurs wis used
for control and also this control interval was found o be
AT, SREsiME) it Pahet CASES =i Tun

Tho sruocimurn load in HICCH made was an IMEPn of 3.5
Bar which is about hall of the losd possible in 5| mode
and aboul hatt the masimus iead i HOC) mode with
cther fushy, For the leads whene HOC] cperation could
be conducied indcabed themmal sfMzency for HCCH was
g o that of 51

Mauss, F.
Cambuston Physics Departmant. Lund Imtise of Tedenolsgy

When the enging wis opewied on low  lambdas
e, #wd} emmsions of carbon monomide and
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INTRODUCTION

The engire manufachurers of today are challenged By
the legnlative demands of kew emisiiom and by the
nesd 0o decreass the COpEndency ON NORHIENEVALE
Tusis, such an 0. Hydropen (Hy) has been suppesied a3
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HCCI activities in Lund

. Basic engine studies
. Laser diagnostics

. Combustion modeling - Chemical
Kinetics

. Closed loop combustion control
. Fuel effect



Closed loop combustion control,
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6-cylinder HCCI Engine with dual fuel




Operating range with CLCC
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Combustion timing
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Presenter�
Presentation Notes�
Combustion phasing (CA50) shows a very nonlinear dependence on fuel ratio (octane number). Each line represents a specific operating point (load, speed, intake temperature)�


Sensitivity Estimation
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Unstable operation possible with CLCC
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HCCI activities in Lund

. Basic engine studies
. Laser diagnostics

. Combustion modeling - Chemical
Kinetics

. Closed loop combustion control
. Fuel effect



HCCI-fuel

HCCI fuel index to be developed
— Diesel engine has cetane number CN

— Sl engine has octane number,
RON and MON

— But HCCI is a different process
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lgnition temperature
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Figure 8.3. (a) Two-stage ignition process of iso-octane and n-heptane. (b) Evaluated ignition
temperature versus ignition pressure for different mixtures of iso-octane and n-heptane. The
legend states the octane number (ON). Engine speed = 1000 rpm and /. = 3.0.
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Fuel parameters:
*CN

* RON

« MON

* Boiling range

* Flammability limits

» Heat of vaporization

* Ignitability

» Laminar flame speed

» Reid vapor pressure

« Spontaneous ign. temp.
 Other?

* New?

Test conditions:

*CR

* Inlet temperature

» Boost

* EGR — Residual gases
e Premixed - DI

* HCCI — CAl

>
RPM



Summary

« HCCI needs a fuel rating similar to
Research Octane Number,RON, Motor
Octane Number, MON and Cetane
Number, CN

o Alternative fuels containing oxygen can
reduce soot significant

« HCCI techniques can be used to improve
normal diffusion combustion of alcohols



Thank you!
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