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Background

To suppress the knocking combustion:

・Promotion of normal flame propagation by
Compactness of the combustion chamber, Central ignition, 
Induction of swirl and squish flows, Hydrogen addition, et al.

・Suppression of auto-ignition in end-gas region by
Decrease in the intake air temperature with the inter cooler, 
Decrease in the wall temperature with the effective cooling 
technique, Reduction of the residual burned gas with the 
optimized valve timing, Decrease in the end gas temperature 
using the induction of the squish flow or piston speed control, et 
al.



Objective

Our new concept for suppression of knocking combustion is
metal wire installation in end-gas region.

Expectation:
・Suppression of auto-ignition 
heat sink, consumption of radical species

・Suppression of pressure vibration (knock intensity)
obstacle 

・Others
catalytic effect, et al.

The effect of wire installation on knocking combustion is 
verified experimentally using a rapid compression machine.
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6 H-type wires 6 V-type wires

26mm

5mm

Spark Plug 

12mm

12mm

Combustion Chamber (Type-A) 

Inner diameter of combustion chamber: 51 mm
Height of combustion chamber at TDC: 26 mm
Wire diameter: 0.9 mm (Ni-Cr)



Compression Ratio : 7.5
5mm

Configuration of Wire Installation for 
Combustion (Type-A)

12N-type wires



Mixture n-butane - air

Equivalence ratio 1.0

Initial temperature 295K

Initial pressure 0.1 MPa

Compression ratio 5.0, 7.5, 8.5, 9.0

Experimental Condition
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Effect of Configuration and Number of 
Wires on Knock Intensity

Compression ratio: 7.5
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Effect of 6-H Type Wire Installation on 
Knock Intensity
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Compression Ratio : 7.5

Averaged Knock Intensity
No wires

KI = 0.0438MPa
6 N-type wires

KI = 0.0139MPa
6H-type wires

KI = 0.0078MPa

Effect of N-type Installation on Knock Intensity
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Compression ratio: 9.0
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Direct Images just before and after Onset of 
Auto-ignition

No wires
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Compression ratio: 8.5
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End-Gas Region

Time

Estimation of Increment of Light Emission Intensity 
During Time Interval between Two Successive Frames

Compression Ratio : 9.0
40,500FPS



Time histories of Increment of Light Emission 
Intensity in End-gas Region
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Compression Ratio : 9.0
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The combustion after auto-ignition becomes ‘moderate’ with wire installation.



Modes of reaction front propagation
(Bradley et al.)

1. Thermal explosion.
2. Supersonic autoignitive deflagration.
3. Developing, developed detonation.
4. Subsonic autoignitive deflagration.
5. Laminar burning deflagration.

Supersonic autoignitive deflagration Developing, developed detonation



Combustion Chamber (Type-B) 
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Wire is strung along 1/3 of the circumference of the cylinder.
Wire temperature can be varied from 298K to 623K
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The significant reduction of the knock intensity is achieved by the wire installation.  
The knock intensity decreases as the number of the wire increases.  

The auto-ignition occurs with and without wire installation. 

The existence of the wire in the end-gas region has little effect on the normal 
flame propagation induced by the spark ignition. There is little change in the end 
gas mass fraction by the wire installation. 

The knocking combustion behavior after the auto-ignition becomes moderate with 
wire installation, which may result in the reduction of the knock intensity. 

The installation of the wire heated electrically up to 623 K leads to the reduction 
of the knock intensity.

Conclusions
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Compression Ratio : 7.5
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Description

The objective of this task is to obtain fundamental information, which can 
be useful for designing a high intensity compact industrial combustion system.  
For this purpose, the turbulence-combustion interaction in extremely strong 
turbulent flow and combustion behavior in the combustion chamber of internal 
combustion engines have been studied experimentally and numerically.  

Two topics on high intensity combustion have been conducted in this 
subtask.  One is the knocking combustion behavior in spark ignition engines, 
and the other is modeling of turbulent premixed combustion by DNS database.



Simulation of Turbulent Premixed Flames by a Hybrid Turbulence 
Model

A new turbulence model called hybrid model was proposed to simulate 
turbulent premixed combustion with flame-generated turbulence and counter- 
gradient diffusion. The model constants were evaluated by DNS database, and 
these models were in good agreement with DNS.
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Fig. 1 Simulation model
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Fig. 2 Distribution of progress variable Fig. 3 Distribution of turbulent energy

Fig. 4 Distribution of turbulent scalar flux
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