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Limited fossil fuel energy.
Air quality deterioration by pollutant matters.
Global warming by green house gases.

-

Petroleum alternatives
Sustainable energy
Clean energy

-

Higher efficiency Alternative fuels
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Diesel Engine = Gasoline Engine

(compression ignition)

-

fuel injector :E
-
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(spark ignited)

apark plug
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nitric oxides + smoke s
.

Advantages

® Fuel

® Low fuel consumption
® Low NOx emission

® Low soot emission

= hot flame region:
hot flame region: .3 nitric Dlldgll

Low Carbon
Alternative Fuel

HCCI Engine

(Homogeneous Charge
Compression Ignition)
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Low temperature combustion »
ultra low emissions 1

Disavantages

® High in-cylinder peak pressure
® Narrow operating range
® High HC and CO emission

T
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High Energy Efficiency ‘ low Carbon

Alternative Fuel

CNG

DME

Hydrogen

Ethanol /| Methanol
Bio-fuel

etc.

Prospects of Alternative Fuels for Cl Engines

® The proportion of Gasoline & Diesel will decrease
® Commercialization of Gaseous Fuels : LPLi, CNG, DME
@ Diversification of alternative fuels

® Rise of Hydrogen ICE in the future to supplement or to compete Fuel Cell
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Dimethyl-Ether, DME

® Liquefied gas similar to LPG

® Simple oxygenate compound

® “Synthetic Fuel” derived by chemical
conversion of NG or coal.

Physical Properties of DME and Diesel

Diesel

Note

Chemical structure

CnH1.8n

Oxygenated fuel

Bulk modulus (x102 N/m?) @20

14.9

Compressibility

Stoichiometric A/F ratio

14.6

Low calorific value (MJ/Kg)

42.5

Density (g/ml)

0.84

Cetane number

40~50

Auto ignition Temp. @1atm ()

250

Compression ignition

Boiling point ()

180~370

Pressurized fuel line
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ydrogen-ric

® A feedstock is converted into SYN GAS composed of CO and Hydrogen

SYNGAS
Steam « CH,+H,0 -> CO + 3H,
Reforming Typical composition of

SYNGAS
H, 35~75,
CO 15~45°,
CO, 2~10%

Partial « 2CH,+0, --—--—-->2CO +
Oxidation 4H,

® ideal H, / CO ratio for Fischer-Tropsch process : 2

— Partial oxidation is more often employed
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DME HCCI
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® HCCI - diesel like thermal efficiency with NOx emission and PM

® Problems : high unburned hydrocarbon and CO emissions, difficulty in
controlling

® DME/air mixture: heat release value in the LTR(at 650K) is larger than that
of petroleum(at 850K)

High cetane number

More than 55, from the viewpoint of its thermo-chemical characteristics
®Good ignition quality

— Intake heating is unnecessary
®Too early ignition

— High in-cylinder pressure and combustion noise
— Low work conversion efficiency

>Ignition timing control
— Exhaust gas recirculation (EGR)
— Additives ; High octane number fuel (H,, methane, methanol ...)
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DME HCCI
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Low temperature oxidation of DME
- ® Occurs 650K
H.,G C (3)
S W (cf. petroleum : 850K)
® Larger heat release
than that of petroleum

® Begins with the C-H
® Bond blockage

Unit : kJ / mol

Two stage ignition (8)
(alkane family)

H. Yamada, et al., 2003
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DME HCCI Fore.

® Heat release during LTO and fuel properties influence directly to HTO.

| & knocking CH,/DMEiAir
0.5 ®HCCI combustion || | F.=0-1MPa
' x misfiring T, =3008K
) He=360rpm
i . 216
_ Combustion phasing B oal s "
by high octane number fuel addition '

Changin Reduce 27
9ing the OH radical
the auto-ignition . . :
(prominent chain carrier) 0.1
temperature

concentration

DME-based Equivalence Ratio g,

kY 2 vl * Y

0 * - L
0 0.1 0.2 0.3 0.4 0.5
Methane-based Equivalence Ratio ¢,

S. Sato, et al. (2005)

® The start of HTO can be altered over a wide range of values by fuel mixing
ratio of poor ignition high octane fuel and good ignition DME.
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Objective
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High efficiency combustion Clean alternative fuels

Increase the efficiency by combustion phasing

& Emission reduction by using clean fuel
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Pneumatic
Pumpl

Fuel optical
chamber

-

Imnnn

-------------------

Injection control

Common-rail

. ]

DME
Nz

Fuel storage

Syn-
gas

Surge
Tank

!

Intake air

Fuel injection type

Engine type

system Single cylinder DICI
-------- Pressure sensor ===, -
: Displacement
498 cc
...... ] G I :
W )t  Bore x Stroke
: Smokemeter E E
.....:::.’::: ...... E : 83x92 mm
. Data acquisition
Do system Compression ratio
§ &o §o ofle .)H [ High speed 14-8
. N\ Camera
Band Pass
Single cylinder Filter
diesel engine
Common-rail injection system (Early injection
J y y Inj
SYOECEER CNG injector (port fuel injection)
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Operating conditions
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Experimental conditions

Fuel DME /H,/CO
Engine speed 800 rpm /1200 rpm
Compression ratio 14.8
Total low heating value 406 J
Start of injection of DME 100 CAD BTDC
Start of injection of H, 360 CAD BTDC
Intake air temperature 30°C

Fraction rates of additive fuel

Q
Ry, = 2" x100 (%)

Total
Qe = Qpyy XM

KAIST Engine Lab.
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Definition of Ignition Delay and Duration o
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with Hydrogen
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Engine speed: 800rpm
Tintake . 30°C
Total low heating value : 406 J / cycle

[ Low tem perature oxidation of H;

H+0,—0+O0H
O+H,—H+OH

=

H; + OH — H, O+ H

CH30CH3 + OH — CH3;0CH; + H;0

=

Ignition timing control

by Hydrogen

KAIST Engine Lab.

15




with Hydrogen
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@ Combustion phase is retarded with increasing H, energy fraction.

® Retarded combustion phasing results in work conversion efficiency

increase.

KAIST Engine Lab.

16




DME HCCI with Hydrogen
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® HC and CO emissions decreased with increasing H, energy fraction
due to the reduction of C atoms in fuel/air mixture.

® However, the HC and CO increased with H, fraction rate over 15%,
due to the low combustion temperature to oxides the HC and CO.
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DME HCCI with Carbon Monoxide
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Combustion is unstable as
the fraction rate of CO

increases over 50% (COV,..,
> 5%).

HTO IS retarded with
increasing CO energy fraction

with the unchanged start of
LTO.

Heat release decreases as the
fraction rate of CO increase,
and lower heat release during

the low temperature oxidation
retards the start of HTR.
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wi arbon Monoxide ETEE L
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1 with Carbon Monoxide
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© Low combustion efficiency, and high CO emissions with CO addition.

@ Increase of T

SO ONn.

combustion

KAIST Engine Lab.

is need to improve the CO oxidation; fuel stratification,
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Conclusion
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® |In DME HCCI combustion, the NOx emission is less than 10 ppm.

® H, / CO addition in DME HCCI is the effective way to control the
combustion phase, can increase the work conversion efficiency.

With H, addition, HC and CO emissions reduced by the decrease
of the carbon atoms in fuel/air mixture.

CO did not burned in DME HCCI due to the low combustion
temperature.

The strategies to increase the combustion temperature such as
intake heating, fuel stratification are needed to improve the
combustion efficiency and combustion stability.
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Thank you for your attention.
I

Choongsik Bae

csbae@kaist.ac.kr
+82 42 350 3044
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