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Problem

• Support H2 ICE development through modeling

• Modeling turbulent combustion of H2 requires data on
laminar burning velocity ul

• ul: propagation speed of planar flame front in a premixed,
quiescent mixture

• Literature:
‣ insufficient data on H2/air
‣ hardly any engine-like conditions
‣ no data on effect of residuals (EGR!)
‣ limited data taking account of stretch effects
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Solution?

• Calculation of ul with 1D chemical kinetics code.
Straightforward? Unfortunately not:
‣ Reaction mechanism OK at atmospheric, severe doubts at high p

and T
‣ Calculations seem to break down for lean mixtures and elevated p
‣ Limited use (e.g. effect of residuals)

• Measurement of ul
‣ At engine-like conditions
‣ Taking account of stretch effects
‣ However: experimental difficulties…
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Stretch

Stretch: affects the balance between diffusion of unburned gas to the
flame front and heating of the unburned by the flame front

Heat flux from
flame front to
unburned, ~ DT

Mass diffusion of
unburned to
flamefront, ~ DM

Thus: affects flame speed!
Any experimental set-up: deviation from steady, non-stretched planar
geometry
Stretch rate =1/A dA/dt, relative change of flame area element
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Measurement of ul
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CH4/air,  = 1, 300 K, 1 bar
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Stretch and instabilities

Dependent on mixture properties:
• flame is insensitive to flame

stretch rate
• flame speed decreases for

positive flame stretch (stable)
• flame speed increases for

positive flame stretch (unstable)
Lean hydrogen mixture: unstable,

develops cells and accelerates
Flame observation: prerequisite

to determining correct burning
velocity!
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Stretch and instabilities

Relevance to engine combustion:
• Flames get increasingly unstable for higher pressures
• Existing ul correlations mostly pressure-derived, thus influenced by

stretch! e.g. iso-octane/air correlations of Metghalchi&Keck
• It is very likely that for all practical fuel/air mixtures, the laminar flames

are unstable at engine conditions
• But: a number of turbulent combustion models assume the turbulent

motion ‘erases’ the flame instabilities, so that these have no effect on
the turbulent burning velocity

• Others assume the effect of instabilities is only important at
low u’ /ul
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Database ul H2 mixtures

Measurements of H2/air/residuals ul’s at:
• 300, 365 and 430 K
• 1, 5 and 10 bar
• Residual concentrations up to 30 vol%
• Equivalence ratios  between 0.25 and 1.0
However, at 5 and 10 bar: no ul’s!
Methodology: use of un,10mm to determine trends
• Indication of burning velocity
• Fixed condition, repeatable
• 10 mm: compromise ignition – cellular acceleration
• Parallel work: stability analysis (see later)
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ul correlation for engine code

• Based on measurements of cellular flames at elevated pressure
• Effects of residual gas: new, can be added to other correlations
• Compared with existing correlation (Iijima&Takeno, C&F1986) in

engine code
Result: nonphysical results with existing correlation, good results with
ours

Refs: - PhD Verhelst, http://hdl.handle.net/1854/3378
- Verhelst, Woolley, Lawes, Sierens, 30th Comb Symp p209-216
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Extension

• Correlation is for stoichiometric to lean mixtures
• Current interest in H2 DI engines: also data on rich mixtures

needed
• Correlation was extended by IFP in the framework of the

EU HyICE programme
‣ Used by BMW and IFP

Refs: Proceedings 1st Int Symp on H2 ICEs
- Gerke, Boulouchos, Wimmer p94-106
- Benkenida, Colin, Jay, Knop p195-206
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Stability analysis

• Ideally: un = I0 ul in engine code, I0: stretch model
However: currently impossible, ul? I0?

• Cellularity = ordered, reproducable
‣ Use fractal considerations to determine surface of smooth flame

from surface of cellular flame, ratio of flame speeds of cellular flame
to ‘smooth’ flame equals ratio of flame areas

‣ Determine inner and outer cutoff scales from range of wavelengths
inducing instability
Inner cutoff: given by start of cellularity
Outer cutoff: flame size
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Experimental difficulties keep haunting us…

( a ) ( b ) ( c ) ( d )

( e ) ( f ) ( g ) ( h )

( i ) ( j ) ( k ) ( l )

Bradley, Lawes, Liu, Verhelst, Woolley, C&F 149:162-172

p=0.5 MPa, T=365 K, =0.6, time interval 0.04 ms (25000 fps)
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Experimental difficulties

• Implications primarily for determination of Markstein
numbers:

• Large uncertainties on
Markstein numbers

• I0 model would require
data on Ma

• High p: determination ul
also problematic
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Encouraging results

• Pressure exponent
ul ~ pn

• Uncertainty on
kinetics:

C&F 149:162-172
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Other work

• Numerical: H2 ICE code (quasi-dimensional) – see PhD
• Experimental

‣ Supercharging+EGR
on single cylinder engine

‣ Variable valve timing
on four cylinder engine

‣ SAE World 2008 paper
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Thank you!

Further information:
See www.FloHeaCom.UGent.be/H2

By the way: BMW Hydrogen 7 comes to
Ghent University tomorrow at 2 pm!


