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HCCI Challenges

•There are some difficulties and obstacles that must be 
overcome before applying HCCI combustion to internal 
combustion engine.

Homogeneous mixture preparation
Ignition control over a range of loads and speeds       
Limitation in power output
Unburned HC and CO

Source:www.erc.wisc.edu/symposiums/2007_Symposium/June%206%20PM-1/Mueller.pdf 
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Control method

•
 

FTM (Fast Thermal Management) 
•

 
VCR (Variable Compression Ratio) 

•
 

VVA (Variable Valve Actuation) 
•

 
AFDM  (Active Fuel Design & 
Management ) 



n=1800r/min�Φ=0.35 

Effect of octane number and cetane number 
on HCCI combustion

Fuel with high cetane

 

number: 

Early auto ignition, deterioration 

of thermal efficiency

Knocking problem at high load

Limitation in power output

Fuel with high octane number:

Difficult to compression ignition, 

Misfire or partial burn at low load.

Limitation in power output

In terms of fuel properties, neither  
high cetane

 

nor high octane number 
fuel is suitable for HCCI in wide 
operating range.

coolant temp.:  85 degree
92 degree (RON 90)



Active Fuel Design for HCCI

To control ignition and combustion phase 

High cetane

 

fuelHigh octane fuel

Active fuel design

To extend engine load

To reduce exhaust emissions

Variable cetane and octane number  for optimizing 
fuel properties suitable for HCCI



Engine Type 4-stroke, water-cooled

Cylinder diameter/stroke 98mm×105mm

Compression ratio 18.5

Port Injection

n-haptaneiso octaneActive fuel design

Fuel injection management

Active Fuel Design and Management for HCCI



PiPi��0.12MPa0.12MPa PiPi��0.25MPa0.25MPa

PiPi��0.30MPa0.30MPa

HCCI combustion by 
means of AFDM
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According to engine load, by means of parametric investigation and

 

optimization 
of fuel blending ratio through dual fuel port injection, engine load is increased by 
80%. Thermal efficiency is improved. HC and CO emissions decrease.

by the AFDM
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Engine Type Natural 
aspiration

Cylinder 
diameter/stroke

135mm×145mm

Compression ratio 16.5, 12.2 

LPGDMEActive fuel design

Active Fuel Design and Management for HCCI



Variation of cylinder pressure and heat 
release rate with engine load

DME HCCI Combustion

For HCCI combustion of DME, engine operation range is very narrow.



Variations of cylinder pressure and heat release rate with engine load     
at optimized DME/LPG blending ratio

HCCI combustion with optimized DME/LPG ratio

Low-temperature kinetic reactions High-temperature reactions

Through parametric investigation, optimal HCCI combustion was 
obtained by variable DME/LPG blending ratio.



Beneficial effect of optimized DME/LPG ratio on 
engine exhaust emissions

�a� HC �b�CO                                    



Extend of engine load Improvement of engine thermal 
efficiency 

Beneficial effect of optimized DME/LPG ratio on 
engine thermal efficiency and load extending
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Active Fuel Design and Management

Distributed heat release – hybrid combustion  Full load with high efficiency
and ultra-low emissions

Port injection

Octane numberActive fuel design

Fuel injection management In cylinder 
direction injection

Cetane number

+

HCCI + Third stage combustion
Variable octane number Direct injection timing

Ignition timing Combustion phase

Premixed ratio

Source: Neely, G.D



Active Fuel Design and Management

Port injection – variable octane number,  Direct injection - n-heptane



Direct injection Direct injection 
timingtiming

Premixed ratioPremixed ratio

Variable octane 
number
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Active Fuel Design and Management
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Effect of Fuel Octane Number of Port Injection on 
Indicated Thermal Efficiency

Fuel octane number of port injection has importance influence on 
distributed heat release and combustion pattern.

Port injection – variable octane number,  Direct injection - n-heptane
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Effect of Fuel Octane Number of Port Injection on 
Indicated Thermal Efficiency
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The distributed heat release and combustion pattern determine engine 
thermal efficiency.

Port injection – variable octane number,  Direct injection - n-heptane
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With optimization of premixed ratio, CO and HC emissions of PCCI 
is much lower than that of HCCI, is higher than that of CIDI.  

Comparison of HC and CO emissions 
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With optimization of premixed ratio, fuel octane number of port injection 
and direct injection timing, indicated thermal efficiency could be improved 
and NOx emission of engine could be decreased substantially, compared 
with CIDI.    Engine could extend to fuel load with low NOx emission. 

Comparison of indicated thermal efficiency and              
NOx emission among HCCI, hybrid combustion and CIDI
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Conclusions
• By means of variable fuel properties and 
injection strategy, the active fuel design and 
management (AFDM) offers important 
advantages for load extension, thermal efficiency 
improvement and exhaust emission reduction for 
both HCCI and Hybrid Combustion. The concept 
of the AFDM could be attractive in producing 
more efficient and clean engine.

1. For HCCI
Ignition control
Engine load extension
CO and HC emission reduction
Thermal efficiency improvement

2. For hybrid combustion
Ignition control 
Combustion phase control
Full load operation
Misfire and knocking avoidance 
Thermal efficiency improvement
Low CO and HC, Compared 
with HCCI
Low NOx, Compared with CIDI

3. For engine control
Fast response
Cycle to cycle control
Closed-loop control 
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