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Purpose of this study

- Dual fuel 
hydrogen induced from intake port

+ diesel fuel injected with common rail injector 
(several ignition locations)

- Supercharged

- much EGR (simulated EGR=nitrogen dilution)
control of hydrogen combustion

- Stable combustion (several ignition location by diesel fuel)
- Higher output (supercharged)
- Very low NOx (much EGR)

Lower output

Higher output

Too higher burn rate

Moderate burn rate



Schematic diagram of the experimental system
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Common rail
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manifold
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781.7 cc

Compression ratio     16.0

Engine main body
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Test engine (single cylinder, water-cooled, supercharged)
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Summary

1) Smooth and knock-free engine operation resulted from the 
use of hydrogen in a supercharged dual-fuel engine for 
leaner fuel-air equivalence ratios maintaining high thermal 
efficiency. It was possible to attain more than 90% hydrogen- 
energy substitution to the diesel fuel with zero smoke 
emissions.

2) The hydrogen-operation produced the maximum IMEP of 
about 900 kPa and a thermal efficiency about 42% with the 
highest fuel-air equivalence ratio of 0.3. There were hardly 
any CO and HC emissions. However, the NOx emissions 
were high.



3) The two-stage combustion was found as a condition of 
higher engine power and a precursor of knocking combustion. 
The main combustion at the maximum IMEP conditions (with 
strong two-stage combustions) was found much faster than that 
of the normal combustions at other IMEP conditions.

4) EGR in hydrogen engine was appeared as an excellent 
method of reducing engine NOx to the zero ppm level.  

Summary (Continued)
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