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Why LII?

•

 

there is a need for substantially improved 
instruments to quantify nanoparticle 
characteristics

•

 

laser-induced incandescence is a 
technique for the measurement of soot 
nanoparticles 
–

 

concentration, active surface area, and 
primary particle diameter

–

 

species selective technique
–

 

sensitivity

Objective
•

 

enhance the state of measurements for 
practical applications
–

 

nonvolatile particulate matter emissions
–

 

at or near ambient conditions
•

 

assess and address issues with LII

What is soot?What is soot?
••

 

dry solid particles produced through incomplete dry solid particles produced through incomplete 
combustion of hydrocarbon fuelscombustion of hydrocarbon fuels

••

 

terminology varies by scientific fieldterminology varies by scientific field
––

 

elemental carbon, black carbon, refractory carbon, elemental carbon, black carbon, refractory carbon, 
carbon blackcarbon black

••

 

LII can be effective at measuring all of theseLII can be effective at measuring all of these

1000rpm / 25% load 1000rpm / 50% load

1000rpm / 75% load 2500rpm / 70% load

[Lee  al., SAE Paper No. 2003-01-3169, 2003]
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TEM Images of 
Nanoparticles Sampled 
From a Flame

in-flame
ethylene
soot

[Schulz et al., Applied Physics B 83, 2006]
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TEM Images of 
Nanoparticles

[Lee  al., SAE Paper No. 2003-01-3169, 2003]

Assumption:

in-flame        in-flame

 

post-flame

 

oxidized
ethylene        methane         diesel              ambient
soot

 

=  soot

 

=  soot

 

=  soot

 

= …

•

 

particulate matter properties of 
interest:
–

 

concentration
–

 

active surface area
–

 

primary particle diameter 
distribution

–

 

aggregate size distribution
–

 

optical properties
–

 

volatile fraction
–

 

composition
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Auto-Compensating LII 
(AC-LII)

•
 

traceable calibration procedure
–

 

absolute intensity, based on spectral radiance
•

 
two-color pyrometry to determine the time-resolved particle 
temperature
–

 

permits use of low-fluence
•

 

particles are kept below the sublimation temperature
•

 
top-hat profile ensures same fluence delivered to all particles

•
 

this new technique is intended to automatically compensate
 

for 
any changes in the experimental conditions
–

 

fluctuations in local ambient temperature
–

 

variation in laser fluence
–

 

laser beam attenuation by the particulate matter
–

 

desorption of condensed volatile material
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Soot Concentration from 
Two-Color Pyrometry

•
 

temperature
 

is determined from the spectral radiance signals at 
two wavelengths
–

 

varies with relative E(m)

 

at the two wavelengths

•
 

soot volume fraction
 

is determined from the temperature and the 
spectral radiance signal at either one of the wavelengths
–

 

depends upon absolute value of E(m)

 

at the selected wavelength
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[Smallwood, Ph. D. Thesis, Cranfield University, 2009]
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electrical and water
to/from power supply

detection package (collection
optics, beam separation
optics, and photodetectors)

Nd:YAG
laser head
(1064 nm)

beam
dump

½

 

wave plate

½

 

wave plate

thin film polarizer

vertical slit

mirror mirrorspherical lens

detector track

control and signal lines
to/from photodetectors

35º

measurement location

Experiment:  LII Optical 
Apparatus

measurement 
location

35º

collection lens

focusing lens

40 mm
circular
aperture

2 mm
circular
aperture

collimating 
lens

pulsed laser beam

long wavelength
(1064 nm) detector

mid wavelength 

(~780 nm) detector

short w
avelength

(~400 nm) detector

Incandescent radiation + Nd:YAG (1064 nm) scattered 
radiation (both are incoherent, unpolarized, collimated) dichroic #1 dichroic #2

interference
filter #1

interference
filter #2

interference
filter #3

[Smallwood et al., SAE Paper No. 2001-01-3581, 2001]
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In-Flame –
 

Absolute LII 
Signals
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[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

laminar diffusion flame, HAB = 42 mm
laser = 1064 nm
fluence = 1.06 mJ/mm2
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In-Flame –
 

Soot Particle 
Temperature Decays
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laminar diffusion flame, HAB = 42 mm
laser = 1064 nm
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In-Flame –
 

Soot 
Volume Fraction
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[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

laminar diffusion flame, HAB = 42 mm
laser = 1064 nm

sublimation
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In-
 

and Post-Flame –
 

Soot 
Absorption Function

•
 

AC-LII does not always agree with gravimetric
–

 

need improved knowledge of E(m) as a function of temperature 
and wavelength

•
 

impact of uncertainty in
E(m) on soot volume fraction
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[Smallwood, Ph. D. Thesis, Cranfield University, 2009]
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In-Flame –
 

Soot 
Absorption Function
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Laminar Diffusion Flame (HAB = 42 mm)

•

 

data acquired with spectral line-of-sight attenuation (Spec-LOSA)
•

 

these results suggest a strong variation of E(m)λ

 

with λ
•

 

could indicate strong variation of soot optical properties with soot age
•

 

could also be absorption of gas or liquid phase species
•

 

if from soot, has significant implications for LII
[Migliorini et al., in preparation, 2009]
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[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

expected behaviour

 

–

 

in-flame results
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In-Flame –
 

LII is not 
Noninstrusive
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[Smallwood, Ph. D. Thesis, Cranfield University, 2009]

laminar diffusion flame, HAB = 42 mm
laser = 1064 nm
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In-Flame –
 

Anomalous 
Initial Cooling

•
 

model seriously 
underestimates 
initial cooling rate 
at low to moderate 
fluences

•
 

model overpredicts 
cooling due to 
sublimation at high 
fluences

[Snelling et al., Applied Physics B 96, 2009]
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Polydisperse Primary Particle 
Diameters and Aggregate 
Sizes –

 
In-Flame

•

 

under

 

flame conditions
–

 

peak particle 
temperature is 
essentially unaffected

–

 

the decay of the 
effective temperature is 
only slightly affected by 
the Np distribution

–

 

the dp distribution has a 
significant influence on 
the effective 
temperature

–

 

primary particle 
diameter can be 
determined
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Polydisperse Primary Particle 
Diameters and Aggregate 
Sizes –

 
Post-Flame
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•

 

at room temperature
–

 

peak particle 
temperature unaffected

–

 

temperature decay is 
strongly dependent on 
both the primary 
particle diameter and 
the aggregate size 
distribution function

–

 

primary particle 
diameter cannot be 
adequately retrieved

 without detailed a priori 
knowledge of the 
aggregate size 
distribution

[Liu et al., Applied Physics B 83, 2006]
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Polydisperse Primary Particle 
Diameters –

 
In-Flame

•
 

inverse analysis
•

 
demonstrates 
range of solutions

•
 

orthogonal data 
could narrow 
range of solutions 

[Daun et al., Applied Physics B 87, 2007]
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Polydisperse Aggregate 
Sizes with Elastic Light 
Scattering 

•
 

similar approach to that for 
primary particle diameter 
distribution

•
 

assume kf = 2.3, dp = 30nm
•

 
fit Ng , Df , σg

•
 

apply Rayleigh-Debye-Gans 
Polydisperse Fractal 
Aggregate (RDG-PFA) 
theory for scattering to 
experimental data

•
 

both scattering and LII may 
be required to assess dp 
and Np distributions

σg

Df

Residuals for RDG fits

[Link et al., in preparation, 2009]
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Experiment:  
Recommended Analysis 
Interval

•
 

for AC-LII measurements the recommended analysis interval is 
approximately 50-100 ns after the peak of the laser pulse
–

 

maximum soot volume fraction and single exponential 
temperature decay

–

 

interval is dependent upon experimental conditions
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[Smallwood, Ph. D. Thesis, Cranfield University, 2009]
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Summary

•
 

autocompensating laser-induced incandescence (AC-LII) 
addresses some of the limitations of conventional LII
–

 

no significant sublimation 
–

 

fluctuations in local ambient temperature 
–

 

variation in laser fluence 
–

 

laser beam attenuation by the particulate matter 
–

 

desorption of condensed volatile material 
•

 
LII however has shown uncertainty in the absolute 
concentration
–

 

issues with calibration
–

 

uncertainty in optical properties of the particles
–

 

variation in concentration with laser fluence
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Summary

•
 

from the perspective of LII

in-flame       post-flame
soot

 
≠

 
soot

•
 

there is one equality

“constants”
 

=
 

variables

•
 

progress has been made in improving the real-time 
measurement of soot and nonvolatile particulate matter 
emissions

•
 

may need to rely on correlation to gravimetric to firmly 
anchor AC-LII measurements for post-flame soot
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Effect of Condensates

[Smallwood et al., in preparation, 2009]
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